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Private Inference (PI)

Client's input privacy is preserved, and the server’s model is protected
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Overheads of Private Inference
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Storage overhead:
 - 17.5KB data per ReLU ops1

 - 100s GB per inference for 
ResNet502

Latency overhead:
 - 18 minutes for one 
inference on ResNet183

 

1. Mishra et al., Delphi: A cryptographic inference service for neural networks, USENIX Security’20
2. Rathee et al., CrypTFlow2: Practical 2-party secure inference, ACM CCS’20

3. Garimella  et al., Characterizing and optimizing end-to-end systems for private 
inference, ASPLOS’23



The Era of Offline-online Phases
 Prior cryptographic frameworks for PI used hybrid protocols, 

splitting evaluation into offline and online phases1

Offline phase:
- Input-independent tasks

- Compute-heavy HE tasks

Online phase:
- Input-dependent tasks

- Linear layer evaluation: Near-plaintext 

latency using additive secret sharing

- 99% of the online cost stems from ReLUs2

1. Mishra et al., Delphi: A cryptographic inference service for neural networks, USENIX Security’20

2. Lou et al., SAFENet: A Secure, Accurate and Fast Neural Network Inference, ICLR’21



Fallacies of Offline-online Phases
 Single PI Isolation: 

- Assumed FLOPs are free

- Primarily optimized for ReLU efficiency
Multiple Requests Impact: 

- Time gap between consecutive client requests matters

- Network complexity further worsen this impact
Implications: 

- FLOPs do carry significant penalties for e2e performance 

- Offline cost starts affecting the real-time performance



Challenges in Simultaneous Optimization of ReLU and FLOPs 

 Layer-Specific Distribution:
- ReLUs are concentrated in early layers

- Critical ReLUs for network accuracy are in deeper layers 

Pruning Conflicts: 

- ReLU pruning often removes ReLUs from early layers 

- FLOPs pruning targets deeper layers due to higher channel counts

Design Conflicts:

- ReLU-efficient networks require different hyper-parameters than 
FLOPs-efficient networks



Network Design Hyper-parameters
 

Stage1 Stage2 Stage3 Stage4

For ResNet18, 𝛼 = 𝛽 = 𝛾  = 2  and 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 2
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Desirable Network Attributes for ReLU and FLOPs Efficiency

 

   Not all stages equally affect ReLU and FLOPs efficiency of the network!

ReLU efficiency FLOPs efficiency

Achieving the right balance requires higher alpha and beta values, 
and a lower gamma value.



How can we design a network that 
balances ReLU and FLOPs efficiency 

under PI constraints?

Our Solution: ReLU Equalization



ReLU Equalization

 

Baseline Network ReLU-equalized Network

ReLU 

Equalization 

ReLUs are redistributed based on their criticality 
by adjusting network design parameters.



Design of PI-Efficient HybReNets Networks

 

HRN-7x5x2x 
HRN-5x5x3x 
HRN-6x6x2x 
HRN-5x7x2x

Bound on 𝛾 prevents excessive FLOPs  in 
deeper layers while maintaining ReLU efficiency



Can one baseline network excel 
across all ReLU counts, when 

using ReLU optimization 
techniques?



Impact of Baseline Network on ReLU Optimization
Coarse-grained optimization Fine-grained optimization

Capacity 
Criticality 
Tradeoff



DeepReShape
 

 

Baseline network

Network with a given 
ReLUs’ criticality order

Redesigned for 
higher ReLU counts

Redesigned for 
Lower ReLU counts

Allocating channels to 
optimize ReLU and FLOPs 
efficiency simultaneously 

Allocating channels to 
maximize the proportion 

of least-critical ReLUs

Input 
network

ReLU 
equalization

Capacity- 
Criticality- 
Tradeoff

Coarse-grained 
ReLU optimization 

2% to 4% 
accuracy 
boost at 

iso-ReLU

20x to 45x 
FLOPs 

reduction

Up to 64x 
ReLU 

reduction



HybReNets Outperform SOTA in Private Inference 

Iso-accuracy improvement: 
2.3x ReLU savings and 3.4x 

FLOPs reduction

Iso-ReLU improvement: 
2.1% accuracy gain and 12.5x 

FLOPs reduction



HybReNets Outperform SOTA FLOPs-efficient Networks 

SOTA FLOPs-efficient networks exhibits inferior ReLU efficiency

ResNet34-based HRNs 
vs ConvNeXt-V2 HRNs vs. RegNet-x 

DeepReShape shows generality beyond ResNet18



Key Takeaways from DeepReShape

1. Heterogeneous channel scaling is required to balance ReLU 
and FLOPs efficiency under PI constraints.  

2. ReLU equalization positions ReLUs in their criticality order to 
prevent excessive FLOPs in deeper layers while maintaining 
ReLU efficiency.

3. Wider networks outperform at higher ReLU counts; least-critical 
ReLU proportion is crucial at lower counts.   


